miércoles, 31 de mayo de 2017

¿Cómo influye el estrés en la aparición de metástasis?

Hace pocos días afirmaban en un artículo, que la psicología en torno al cáncer es una pseudoterapia para la comunidad científica y me quedé perpleja, como imagino que os habréis quedado vosotros al leer esta afirmación. Luego al releer el artículo y ver quién lo había escrito, me dí cuenta de que donde dice "comunidad científica" debería decir "circulo escéptico o santa inquisición". ¿¿Cómo no van a ser importantes las emociones y los sentimientos en el cáncer?? Es de sentido común, no? Somos seres sintientes y no modelos matemáticos

Hoy, quiero hablaros de la influencia del estrés en el cáncer y en concreto del papel que juegan en las metástasis. Cuando me diagnosticaron la enfermedad, desde el momento de la intervención hasta que me dieron los resultados definitivos (3 semanas) viví un periodo de miedo y estrés intenso... no podía dormir, no podía pensar con claridad, no paraba de llorar y fantasear con una muerte próxima. .. Cuando por fin la patóloga hizo el informe todo parecían buenas noticias... carcinoma de células transicionales del ovario encapsulado con lavado peritoneal negativo, lo que hacía presuponer que era un estadio Ia (el más leve)... al día siguiente me palpo las metástasis vaginales... algo sorprendente y que se sale de la evolución típica de la enfermedad. 3 semanas antes de aparecer estas metástasis en la RNM no había nada que hiciera sospechar su presencia y de repente aparecen esas lesiones. Al día siguiente tras palpar las metástasis me realizan un PET TAC y aparecen más metástasis en pulmón y hueso. Aquí, ya me quedo hecha polvo como podéis imaginar. Mi oncólogo me propone empezar quimio y yo empiezo con mi cambio de alimentación, a hacer ejercicio y tratar ese estrés.... 1 mes y medio después, nuevo PET y ya no hay enfermedad. Increíble, ¿no? Pero cierto, muy cierto. Aquí tenéis las pruebas médicas . Después de contaros mi caso vamos a ver que dice la ciencia sobre el tema, en concreto sobre estrés y cáncer de ovario.... Sé que puede ser un post muy técnico, pero está redactado así, para que aquellos que aún son escépticos y creen que las emociones no influyen en la enfermedad se convenzan. En breve, os traigo el artículo con un lenguaje más sencillo y divulgativo, hoy se trata de callar a los que hablan de pseudociencia cuando nos referimos a las emociones y al cáncer.

La principal causa de muerte por cáncer es la metástasis la cual no suele desaparecer con el tratamiento convencional. Estudios clínicos y epidemiológicos en los últimos 30 años han identificado factores psicosociales como el estrés, la depresión crónica y la falta de apoyo social como factores de riesgo para la progresión del cáncer y la aparición de metástasis.  La evidencia de la función que los factores psicosociales pueden jugar en la iniciación del cáncer es limitada , pero si hay evidencia para establecer vínculo y relación entre factores psicológicos como el estrés, la depresión y el aislamiento social y la progresión de la enfermedad. La cronicidad de los sentimientos negativos, manifestada por un estado de ánimo deprimido o un sentimiento de  desesperanza, parece tener una fuerte relación con este vinculo

El apoyo social se refiere a la satisfacción percibida de un individuo con las relaciones sociales y se cree que juega un papel importante en la amortiguación psicológica y la respuesta al estrés biológico. Varios estudios han relacionado altos niveles de apoyo social con mejores resultados clínicos en pacientes con cáncer. Por ejemplo, en pacientes con cáncer de mama, el apoyo social se ha relacionado con una mayor supervivencia en varios estudios a gran escala, aunque se observaron resultados negativos en algunos estudios. Colectivamente, la evidencia  ha demostrado que el estrés y factores psicosociales específicos se asocian con elementos claves de la cascada metastásica tanto en modelos animales como humanos.

  • Respuesta neuroendocrina mediada por estrés Estrés y el SNC

El estrés es un proceso complejo que incluye factores ambientales y psicosociales que inician una cascada de procesos tanto en el sistema nervioso periférico como en el SNC . El estrés puede ser agudo (de corta duración) o crónico (repetitivo o que ocurre durante un período prolongado de tiempo). Bajo condiciones de estrés crónico, el cuerpo permanece en un estado constante de 'overdrive', con efectos deletéreos sobre la regulación de los sistemas de respuesta al estrés, así como efectos negativos sobre otros órganos. Se sabe que tanto la norepinefrina (NE) como la epinefrina (E) están elevadas en individuos con estrés agudo o crónico . Además, los niveles de dopamina (DA) se incrementan en el cerebro durante el estrés agudo . Sin embargo, bajo estrés crónico, los niveles de DA son inferiores como consecuencia de la disminución de la liberación de DA [31]. Una variedad de estresores, incluyendo un trauma severo, un divorcio, un proceso de duelo, así como un episodio de depresión o aislamiento social, se han asociado con alteraciones en varias hormonas neuroendocrinas, en particular, catecolaminas y cortisol.
Se cree que la respuesta al estrés fisiológico es uno de los mediadores probables de los efectos de los factores psicosociales en la progresión del cáncer. La respuesta global al estrés implica la activación de varios sistemas corporales incluyendo el sistema nervioso autónomo y el eje hipotalámico-pituitario-suprarrenal (HPA). La respuesta de "lucha o huida" es provocada por la producción de mediadores como NE y E del sistema nervioso simpático (SNS) y la médula suprarrenal. La respuesta de HPA incluye la liberación de la hormona liberadora de corticotropina por parte del hipotálamo, que induce la secreción de la hormona adrenocorticotrófica de la pituitaria anterior, resultando en la liberación de glucocorticoides (GC) como el cortisol de la corteza suprarrenal. Factores neuroendocrinos adicionales que también se modulan después de un periodo de estrés, incluyendo DA, prolactina, NGF, sustancia P y oxitocina .

  • Papel de los mediadores neuroendocrinos en los órganos periféricos

Los mediadores neuroendocrinos pueden modular la función celular en el tejido periférico y esto estar relacionado con el inicio y la progresión del cáncer. Por ejemplo, los neurotransmisores del SNS (es decir, NE y E) desempeñan papeles fisiológicamente relevantes en la regulación del microambiente de los órganos periféricos. El ovario proporciona un ejemplo que es altamente relevante para los cánceres del sistema reproductivo. Las concentraciones totales de catecolaminas son sustancialmente más altas en los ovarios que en el plasma  Por otra parte, los niveles de catecolaminas en los ovarios se sabe que se incrementan en respuesta al estrés. Del mismo modo, las catecolaminas están presentes en niveles  más altos en el microambiente de la médula ósea . 
Se ha demostrado que las catecolaminas suprimen la mielopoyesis tanto in vivo como in vitro en presencia de carboplatino

Los efectos de las catecolaminas están mediados por los receptores adrenérgicos (ADR), que son las clases más ampliamente estudiadas de los receptores acoplados a la proteína G. 
Los receptores β-adrenérgicos (ADRB) median muchos efectos de las catecolaminas en las células y se han identificado en varios tipos de células cancerosas, incluyendo las células de cáncer de mama  y de ovario. ADRBs son receptores-proteína G acoplados cuya función primaria es la transmisión de información desde el entorno extracelular al interior de la célula. 
tanto NE y E se elevan de manera sostenida en el ovario y otros tejidos peritoneales en los modelos preclínicos de estrés crónico [61]. Estos aumentos hormonales se relacionaron con una mayor carga tumoral, al parecer debida a un aumento de la angiogénesis. Parece que el estrés crónico promueve la angiogénesis en los tumores ováricos malignos 




Los glucocorticoides son una clase de hormonas esteroides que se unen al receptor GC (GCR), que está presente en casi todas las células animales vertebradas. GCs son parte del mecanismo de retroalimentación que modula la actividad inmune y las respuestas inflamatorias. Las dosis farmacológicas de GCs se usan con frecuencia para tratar condiciones que son causadas por un sistema inmune hiperactivo. GC también interfieren con diversos mecanismos anormales en las células cancerosas, por lo que se utilizan en dosis altas para tratar ciertas neoplasias . 
El cortisol es el GC humano más importante. Es esencial para la vida y regula una variedad de importantes funciones cardiovasculares, metabólicas, inmunológicas y homeostáticas. EL cortisol es secretado por la corteza suprarrenal en respuesta al estrés . El apoyo social y la reducción del estrés se asocian con menores niveles de cortisol. Una serie de estudios han demostrado que el estrés puede alterar los ritmos circadianos neuroendocrinos en formas que favorecen el crecimiento tumoral y la metástasis. Del mismo modo, el trabajo nocturno, que se sabe que perturba los ritmos endocrinos, se considera un factor de riesgo para los cánceres de mama y colorrectal . 

  • Efectos del estrés sobre las metástasis del cáncer


La metástasis es un proceso complejo que requiere varios pasos para desarrollarse, incluyendo angiogénesis, proliferación, invasión, embolización y evasión de la vigilancia del sistema inmune 
La  evidencia muestra que la respuesta al estrés puede afectar a muchas partes de esta cascada. 
El estrés favorece la angiogénesis, la proliferación celular, la migración e invasión de las células tumores


  • Efectos de estrés sobre la respuesta inmune
Se sabe que el sistema nervioso central, el sistema endocrino y el sistema inmunitario interactúan entre sí y, por lo tanto, los cambios en cualquier sistema pueden tener efectos en los otros sistemas. El SNC modula la inmunidad tanto a través de la liberación de GCs a través del eje HPA como a través de la liberación de catecolaminas a través del sistema nervioso autónomo. Varios factores implicados en la respuesta al estrés están implicados en la activación o disminución de la respuesta inmune, lo que puede jugar un papel determinante para que las células tumorales escapen a la detección y eliminación por parte de las células inmunitarias. 

  • Glucocorticoides y respuesta inmune
Los glucocorticoides son esenciales para la regulación de respuestas inmunes e inflamatorias. Las concentraciones fisiológicas de GCs en el rango de 350-950 nmol / l, como ocurren durante el estrés físico o psicológico, resultan en la modulación de la transcripción de genes implicados en la respuesta inflamatoria, mientras que las dosis farmacológicas (concentraciones mayores que fisiológicas [> 1 μmol /L]) resultan en una supresión de la respuesta inflamatoria  Del mismo modo, durante situaciones de estrés crónico, se ha demostrado que los niveles elevados de GC son inmunosupresores, lo que conduce a una mayor susceptibilidad a la infección viral, cicatrización prolongada de la herida o disminución de la producción de anticuerpos después de la vacunación . Los pacientes con cáncer de mama con mayores concentraciones diarias de cortisol diurna también mostraron inmunidad suprimida frente a los antígenos comúnmente encontrados, lo que sugiere una disminución de la respuesta inmune celular. Dentro del sistema inmunológico, las células T y B, los neutrófilos, los monocitos y los macrófagos llevan todos GCRs, lo que permite la regulación por GC tanto de las respuestas inmunes celulares como humorales . Además, GCs puede inducir la apoptosis en monocitos, macrófagos y linfocitos T , proporcionando más pruebas de su capacidad para regular la función inmune normal.

Conclusiones

El estilo de vida moderno que asocia por lo general estrés crónico se ha asociado con la patogénesis de muchas enfermedades, incluido el cáncer. El estrés crónico  activa vías de señalización específicas en las células cancerosas y en el microambiente tumoral, dando lugar al crecimiento ya la progresión del tumor. Elucidar  estas vías es esencial para el desarrollo de nuevos enfoques para bloquear los efectos deletéreos de la biología del estrés en el crecimiento del cáncer y metástasis.

Perspectiva futura

Los estilos de vida contemporáneos y el ambiente de las sociedades modernas parecen inducir trastornos relacionados con el estrés. Con respecto a la patogénesis del cáncer, hay evidencia creciente y convincente de las implicaciones biológicas y clínicas de las influencias psicosociales y emocionales.
Se ha demostrado que los bloqueadores beta bloquean muchos de los efectos deletéreos del estrés. Si bien algunos estudios clínicos han demostrado menor incidencia de cáncer entre los pacientes tratados con β-bloqueadores, en otros, el riesgo de cáncer era neutral.

Los estudios sugieren que las intervenciones conductuales y farmacológicas orientadas a manejar el estrés de los enfermos con cáncer puede tener efectos sobre la progresión tumoral.

Resumen 
■ La evidencia apunta a un papel prominente del estrés crónico en el crecimiento del cáncer y la metástasis.
■ El sistema nervioso simpático y la activación del eje hipotálamo-hipofisario-suprarrenal, junto con hormonas relacionadas, tienen impactos funcionales y biológicamente significativos en el microambiente tumoral.
■ Las vías de señalización del receptor β-adrenérgico afectan directamente a las células cancerosas. Las hormonas de estrés (por ejemplo, norepinefrina y epinefrina) estimulan la angiogénesis, la migración celular y la invasión, conduciendo a un aumento del crecimiento y progresión del tumor.
■ La dopamina retrasa el crecimiento tumoral inhibiendo la angiogénesis.
■ Los glucocorticoides inhiben la apoptosis de células cancerosas inducida por la quimioterapia y aumentan la supervivencia de la célula cancerosa.
■ Se están desarrollando intervenciones farmacológicas y bio-conductuales integradas para modular la influencia del sistema neuroendocrino en el microambiente del tumor y crear en base a esto terapias contra el cáncer más exitosas.

Texto extraído de:

Moreno-Smith, Myrthala, Susan K Lutgendorf, and Anil K Sood. “Impact of Stress on Cancer Metastasis.” Future oncology (London, England) 6.12 (2010): 1863–1881. PMC. Web. 30 May 2017
1. Fidler IJ. The role of organ microenvironment in the biology and therapy of cancer metastasis. J. Cell. Biochem 2007;101:927–936. [PubMed: 17177290]
2. Fidler IJ. The organ microenvironment and cancer metastasis. Differentiation 2002;70(9–10):498– 505. [PubMed: 12492492]
3. Spiegel D, Giese-Davis J. Depression and cancer: mechanisms and disease progression. Biol. Psychiatry 2003;54(3):269–282. [PubMed: 12893103]
4. Bukberg J, Penman D, Holland JC. Depression in hospitalized cancer patients. Psychosom. Med 1984;46:199–212. [PubMed: 6739680]
5. Spiegel D. Health caring: psychosocial support for patients with cancer. Cancer 1994;74(4):1453– 1457. [PubMed: 8062175]
6. Chida Y, Hamer M, Wardle J, et al. Do stress-related psychosocial factors contribute to cancer incidence and survival? Nat. Clin. Pract. Oncol 2008;5(8):466–475. [PubMed: 18493231] ■■ Provides an overview of the clinical studies addressing the impact of stress factors on cancer.
7. Duijts SF, Zeegers MP, Borne BV. The association between stressful life events and breast cancer risk: a meta-analysis. Int. J. Cancer 2003;107(6):1023–1029. [PubMed: 14601065]
8. Lillberg K, Verkasalo P, Kaprio J, et al. Stressful life events and risk of breast cancer in 10,808 women: a cohort study. Am. J. Epidemiol 2003;157(5):415–423. [PubMed: 12615606]
9. Geyer S. Life events prior to manifestation of breast cancer: a limited prospective study covering eight years before diagnosis. J. Psychosom. Res 1991;35(2–3):355–363. [PubMed: 2046066]
10. Michael YL, Carlson NE, Chlebowski RT, et al. Influence of stressors on breast cancer incidence in the Women’s Health Initiative. Health Physiol 2009;28:137–146.
11. Steel JL, Gamblin TC, Olek MC, Carr BI. Depression, immunity, and survival in patients with hepatobiliary carcinoma. J. Clin. Oncol 2007;25:2397–2405. GD. [PubMed: 17557953]
12. Satin JR, Linden W, Phillips MJ. Depression as a predictor of disease progression and mortality in cancer patients: a meta-analysis. Cancer 2009;22:5349–5361. [PubMed: 19753617]
13. Everson SA, Goldberg DE, Kaplan GA, et al. Hopelessness and risk of mortality and incidence of myocardial infarction and cancer. Psychosom. Med 1996;58(2):113–121. [PubMed: 8849626]
14. Stommel M, Given BA, Given CW. Depression and functional status as predictors of death among cancer patients. Cancer 2002;94(10):2719–2727. [PubMed: 12173342]
15. Watson M, Haviland JS, Greer S, et al. Influence of psychological response on survival in breast cancer: a population-based cohort study. Lancet 1999;354(9187):1331–1336. [PubMed: 10533861]
16. Buccheri G. Depressive reactions to lung cancer are common and often followed by a poor outcome. Eur. Respir. J 1998;11(1):173–178. [PubMed: 9543289]
17. Cohen S, Willis TA. Stress, social support, and the buffering hypothesis. Psychol. Bull 1985;98:310–357. [PubMed: 3901065]
18. Funch DP, Marshall J. The role of stress, social support and age in survival from breast cancer. J. Psychosom. Res 1983;27:77–83. [PubMed: 6834302]
19. Marshall JR, Funch DP. Social environment and breast cancer. A cohort analysis of patient survival. Cancer 1983;52(8):1546–1550. [PubMed: 6616415]
20. Maunsell E, Brisson J, Deschenes L. Social support and survival among women with breast cancer. Cancer 1995;76(4):631–637. [PubMed: 8625157]
21. Giraldi T, Rodani MG, Cartei G, et al. Psychosocial factors and breast cancer: a 6-year Italian follow-up study. Psychother. Psychosom 1997;66(5):229–236. [PubMed: 9311026]
22. Butow PN, Hiller JE, Price MA, et al. Epidemiological evidence for a relationship between life events, coping style, and personality factors in the development of breast cancer. J. Psychosom. Res 2000;49(3):169–181. [PubMed: 11110988]
23. Kroenke CH, Kubzansky LD, Schernhammer ES, et al. Social networks, social support, and survival after breast cancer diagnosis. J. Clin. Oncol 2006;24(7):1105–1111. [PubMed: 16505430]
24. Sapolsky, RM. Why Zebras Don’t Get Ulcers: A Guide to Stress, Stress-Related Diseases, and Coping. WH Freeman and Co.; NY, USA: 1998.
25. Chrousos G. Stress and disorders of the stress system. Nat. Rev. Endocrinol 2009;5:374–381. [PubMed: 19488073]
26. McEwen, B. Stress and health: relevance to persian gulf veterans?; Presented at: International Society for Traumatic Stress Studies Annual Meeting 1998; Washington, DC, USA. 21–23 November 1998;
27. Schmidt C, Kraft K. β-endorphin and catecholamine concentrations during chronic and acute stress in intensive care patients. Eur. J. Med. Res 1996;1(11):528–532. [PubMed: 9438155]
28. Rupp H, Dhalla KS, Dhalla NS. Mechanisms of cardiac cell damage due to catecholamines: significance of drugs regulating central sympathetic outflow. J. Cardiovasc. Pharmacol 1994;24(Suppl. 1):S16–S24. [PubMed: 7533222]
29. Rupp H, Jacob R. Excess catecholamines and the metabolic syndrome: should central imidazoline receptors be a therapeutic target? Med. Hypotheses 1995;44(3):217–225. [PubMed: 7609678]
30. Puglisi-Allegra S, Imperato A, Angelucci L, et al. Acute stress induces time-dependent responses in dopamine mesolimbic system. Brain Res 1991;554(1–2):217–222. [PubMed: 1933302]
31. Imperato A, Angelucci L, Casolini P, et al. Repeated stressful experiences differently affect limbic dopamine release during and following stress. Brain Res 1992;577(2):194–199. [PubMed: 1606494]
32. Seeman TE, Berkman LF, Blazer D, et al. Social ties and support and neuroendocrine function: the McArthur studies of successful aging. Ann. Behav. Med 1994;16(95–106)
33. Seeman TE, McEwen BS. Impact of social environment characteristics on neuroendocrine regulation. Psychosom. Med 1996;58(5):459–471. [PubMed: 8902897]
34. Seeman TE, Rowe JW, Horwitz RI, McEwen B. Price of adaptation-allostatic load and its health consequences. Arch. Intern. Med 1997;157:2259–2268. SB. [PubMed: 9343003]
35. Kiecolt-Glaser JK, Glaser R, Malarkey WB. Love, marriage, and divorce: newlyweds’ stress hormones foreshadow relationship changes. J. Consult. Clin. Psychol 2003;71:176–188. BC. [PubMed: 12602438]
36. Tyrka AR, Wier L, Price LH, et al. Childhood parental loss and adult hypothalamic–pituitary– adrenal function. Biol. Psychiatry 2008;63:1147–1154. [PubMed: 18339361]
37. Bevans K, Cerbone A, Overstreet S. Relations between recurrent trauma exposure and recent life stress and salivary cortisol among children. Develop. Psychopathol 2008;20:257–272.
38. Hughes J, Watkins L, Blumenthal JA, et al. Depression and anxiety symptoms are related to increased 24-hour urinary norepinephrine excretion among healthy middle-aged women. J. Psychosom. Res 2004;57:353–358. [PubMed: 15518669]
39. Grossman F, Potter WZ. Catecholamines in depression: a cumulative study of urinary norepinephrine and its major metabolites in unipolar and bipolar depressed patients versus healthy volunteers at the NIMH. Psychiatry Res 1999;87:21–27. [PubMed: 10512151]
40. Lake C, Pickar D, Ziegler MG, et al. High plasma norepinephrine levels in patients with major affective disorder. Am. J. Psychiatry 1982;139:1315–1318. [PubMed: 6289682]
41. McEwen B. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev 2007;87:873–904. [PubMed: 17615391]
42. Ebner K, Saria A, Singewald N. Substance P in the medial amygdala: emotional stress-sensitive release and modulation of anxiety-related behavior in rats. Proc. Natl Acad. Sci. USA 2004;101:4280–4285. RN. [PubMed: 15024126]
43. Lakshmanan J. Nerve growth factor levels in mouse serum: variations due to stress. Neurochem. Res 1987;12:393–397. [PubMed: 3600964]
44. Lara HE, Porcile A, Espinoza J, et al. Release of norepinephrine from human ovary: coupling to steroidogenic response. Endocrine 2001;15(2):187–192. [PubMed: 11720244]
45. Greenwald, G.; Roy, S. Follicular development and its control. In: Knobil, E.; Neill, J., editors. The Physiology of Reproduction. Raven Press; NY, USA: 1994. p. 629-724.
46. Nankova B, Kvetnansky R, Hiremagalur B, et al. Immobilization stress elevates gene expression for catecholamine biosynthetic enzymes and some neuropeptides in rat sympathetic ganglia: effects of adrenocorticotropin and glucocorticoids. Endocrinology 1996;137(12):5597–5604. [PubMed: 8940389]
47. Paredes A, Galvez A, Leyton V, et al. Stress promotes development of ovarian cysts in rats: the possible role of sympathetic nerve activation. Endocrine 1998;8(3):309–315. [PubMed: 9741836]
Future Oncol. Author manuscript; available in PMC 2011 October 1.
48. Lara HE, Dorfman M, Venegas M, et al. Changes in sympathetic nerve activity of the mammalian ovary during a normal estrous cycle and in polycystic ovary syndrome: studies on norepinephrine release. Microsc. Res. Tech 2002;59(6):495–502. [PubMed: 12467025]
49. Maestroni GJ. Neurohormones and catecholamines as functional components of the bone marrow microenvironment. Ann. NY Acad. Sci 2000;917:29–37. [PubMed: 11268355]
50. Kobilka B. Adrenergic receptors as models for G protein-coupled receptor. Annu. Rev. Neurosci 1992;15:87–114. [PubMed: 1575451]
51. Pullar CE, Isseroff RR. The β-2-adrenergic receptor activates pro-migratory and pro-proliferative pathways in dermal fibroblasts via divergent mechanisms. J. Cell Sci 2006;119(Pt 3):592–602. [PubMed: 16443756]
52. Lai LP, Mitchell J. β2-adrenergic receptors expressed on murine chondrocytes stimulate cellular growth and inhibit the expression of Indian hedgehog and collagen type X. J. Cell Biochem 2008;104:545–553. [PubMed: 18059015]
53. Bylund D, Blaxall HS, Iversen LJ, Caron MG, Lefkowitz RJ, Lomasney JW. Pharmacological characteristics of α 2-adrenergic receptors: comparison of pharmacologically defined subtypes with subtypes identified by molecular cloning. Mol. Pharmacol 1992;42:1–5. [PubMed: 1353247]
54. Fernando M, Heaney AP. α1-adrenergic receptor antagonists: novel therapy for pituitary adenomas. Mol. Endocrinol 2005;19(12):3085–3096. [PubMed: 16020484]
55. Badino GR, Novelli A, Girardi C, et al. Evidence for functional β-adrenoceptor subtypes in CG-5 breast cancer cell. Pharmacol. Res 1996;33(4–5):255–260. [PubMed: 8938018]
56. Lutgendorf SK, Cole S, Costanzo E, et al. Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin. Cancer Res 2003;9(12):4514–4521. [PubMed: 14555525]
57. McDonald PH, Lefkowitz RJ. β-arrestins: new roles in regulating heptahelical receptors functions. Cell Signal 2001;13(10):683–689. [PubMed: 11602178]
58. Dixon RA, Kobilka BK, Strader DJ, et al. Cloning of the gene and cDNA for mammalian β- adrenergic receptor and homology with rhodopsin. Nature 1986;321(6065):75–79. [PubMed: 3010132]
59. Emorine LJ, Marullo S, Briend-Sutren MM, et al. Molecular characterization of the human β-3- adrenergic receptor. Science 1989;245(4922):1118–1121. [PubMed: 2570461]
60. Frielle T, Collins S, Daniel KW, et al. Cloning of the cDNA for the human β 1-adrenergic receptor. Proc. Natl Acad. Sci. USA 1987;84(22):7920–7924. [PubMed: 2825170]
61. Thaker PH, Han LY, Kamat AA, et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat. Med 2006;12(8):939–944. [PubMed: 16862152] ■■ First study to demonstrate the impact of stress hormones on cancer angiogenesis.
62. Rhen T, Cidlowski J. Anti-inflammatory action of glucocorticoids – new mechanisms for old drugs. N. Engl. J. Med 2005;353(16):1711. [PubMed: 16236742]
63. Newton R. Molecular mechanisms of glucocorticoid action: what is important? Thorax 2000;55(7): 603–613. [PubMed: 10856322]
64. Pazirandeh A, Xue Y, Prestegaard T, et al. Effects of altered glucocorticoid sensitivity in the T cell lineage on thymocyte and T cell homeostasis. FASEB J 2002;16(7):727–729. [PubMed: 11923224]
65. Chrousos GP, Gold PW. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 1992;267(9):1244–1252. [PubMed: 1538563]
66. Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev 2000;21(1): 55–89. [PubMed: 10696570]
67. Antoni MH, Cruess S, Cruess DG, et al. Cognitive–behavioral stress management reduces distress and 24-hour urinary free cortisol output among symptomatic HIV-infected gay men. Ann. Behav. Med 2000;22(1):29–37. [PubMed: 10892526]
68. Sephton S, Spiegel D. Circadian disruption in cancer: a neuroendocrine–immune pathway from stress to disease? Brain Behav. Immun 2003;17(5):321–328. [PubMed: 12946654]
69. Sephton SE, Sapolsky RM, Kraemer HC, et al. Diurnal cortisol rhythm as a predictor of breast cancer survival. J. Natl Cancer Inst 2000;92(12):994–1000. [PubMed: 10861311] Important clinical study addressing the role of cortisol in breast cancer patients.
70. Schernhammer ES, Laden F, Speizer FE, et al. Night-shift work and risk of colorectal cancer in the nurses’ health study. J. Natl Cancer Inst 2003;95(11):825–828. [PubMed: 12783938]
71. Kawamura A, Tamaki N, Kokunai T. Effect of dexamethasone on cell proliferation of neuroepithelial tumor cell lines. Neurol. Med. Chir. (Tokyo) 1998;38(10):633–638. discussion 638–640. [PubMed: 9861846]
72. Nakane T, Szentendrei T, Stern L, et al. Effects of IL-1 and cortisol on β-adrenergic receptors, cell proliferation, and differentiation in cultured human A549 lung tumor cells. J. Immunol 1990;145(1):260–266. [PubMed: 2162889]
73. Sheridan JF, Feng NG, Bonneau RH, et al. Restraint stress differentially affects anti-viral cellular and humoral immune responses in mice. J. Neuroimmunol 1991;31(3):245–255. [PubMed: 1847396]
74. Padgett DA, Marucha PT, Sheridan JF. Restraint stress slows cutaneous wound healing in mice. Brain Behav. Immun 1998;12(1):64–73. [PubMed: 9570862]
75. Padgett DA, Sheridan JF, Dorne J, et al. Social stress and the reactivation of latent herpes simplex virus type 1. Proc. Natl Acad. Sci. USA 1998;95(12):7231–7235. [PubMed: 9618568]
76. Iwakabe K, Shimada M, Ohta A, et al. The restraint stress drives a shift in Th1/Th2 balance toward Th2-dominant immunity in mice. Immunol. Lett 1998;62(1):39–43. [PubMed: 9672146]
77. Fiserova A, Starec M, Kuldova M, et al. Effects of D2-dopamine and α-adrenoceptor antagonists in stress induced changes on immune responsiveness of mice. J. Neuroimmunol 2002;130(1–2):55– 65. [PubMed: 12225888]
78. Nukina H, Sudo N, Aiba Y, et al. Restraint stress elevates the plasma interleukin-6 levels in germ- free mice. J. Neuroimmunol 2001;115(1–2):46–52. [PubMed: 11282153]
79. Zhou D, Kusnecov AW, Shurin MR, et al. Exposure to physical and psychological stressors elevates plasma interleukin 6: relationship to the activation of hypothalamic–pituitary–adrenal axis. Endocrinology 1993;133(6):2523–2530. [PubMed: 8243274]
80. Zorzet S, Perissin L, Rapozzi V, et al. Restraint stress reduces the antitumor efficacy of cyclophosphamide in tumor-bearing mice. Brain Behav. Immun 1998;12(1):23–33. [PubMed: 9570859]
81. Steplewski Z, Vogel WH, Ehya H, et al. Effects of restraint stress on inoculated tumor growth and immune response in rats. Cancer Res 1985;45(10):5128–5133. [PubMed: 3928147]
82. Cao L, Filipov NM, Lawrence DA. Sympathetic nervous system plays a major role in acute cold/ restraint stress inhibition of host resistance to Listeria monocytogenes. J. Neuroimmunol 2002;125(1–2):94–102. [PubMed: 11960645]
83. Steplewski Z, Goldman PR, Vogel WH. Effect of housing stress on the formation and development of tumors in rats. Cancer Lett 1987;34(3):257–261. [PubMed: 3103907]
84. Tjurmina OA, Armando I, Saavedra JM, et al. Exaggerated adrenomedullary response to immobilization in mice with targeted disruption of the serotonin transporter gene. Endocrinology 2002;143(12):4520–4526. [PubMed: 12446578]
85. Kvetnansky R, Fukuhara K, Pacak K, et al. Endogenous glucocorticoids restrain catecholamine synthesis and release at rest and during immobilization stress in rats. Endocrinology 1993;133(3): 1411–1419. [PubMed: 8396019]
86. Ghoshal K, Wang Y, Sheridan JF, Jacob ST. Metallothionein induction in response to restraint stress. Transcriptional control, adaptation to stress, and role of glucocorticoid. J. Biol. Chem 1998;273:27904–27910. [PubMed: 9774402]
87. Ben-Eliyahu S, Yirmiya R, Liebeskind JC, Taylor AN, Gale RP. Stress increases metastatic spread of a mammary tumor in rats: evidence for mediation by the immune system. Brain Behav. Immun 1991;5(2):193–205. [PubMed: 1654166]
88. Ben-Eliyahu S, Page GG, Yirmiya R, et al. Evidence that stress and surgical interventions promote tumor development by suppressing natural killer cell activity. Int. J. Cancer 1999;80(6):880–888. [PubMed: 10074922]
89. Page GG, Ben-Eliyahu S. A role for NK-cells in greater susceptibility of young rats to metastatic formation. Develop. Comp. Immunol 1999;23(1):87–96.
90. Page GG, Ben-Eliyahu S, Yirmiya R, et al. Morphine attenuates surgery-induced enhancement of metastatic colonization in rats. Pain 1993;54(1):21–28. [PubMed: 8378099]
91. Ben-Eliyahu S, Shakhar G, Rosenne E, et al. Hypothermia in barbiturate-anesthetized rats suppresses natural killer cell activity and compromises resistance to tumor metastasis: a role for adrenergic mechanisms. Anesthesiology 1999;91(3):732–740. [PubMed: 10485785]
92. Hermes GL, Delgado B, Tretiakova M, et al. Social isolation dysregulates endocrine and behavioral stress while increasing malignant burden of spontaneous mammary tumors. Proc. Natl Acad. Sci. USA 2009;106(52):22393–22398. [PubMed: 20018726]
93. Hermes GL, Rosenthal L, Montag A, McClintock MK. Social isolation and the inflammatory response: sex differences in the enduring effects of a prior stressor. Am. J. Physiol. Regul. Integr. Comp. Physiol 2006;290(2):R273–R282. [PubMed: 16210419]
94. Sharp J, Zammit T, Azar T, Lawson D. Stress-like responses to common procedures in individually and group-housed female rats. Contemp. Top. Lab. Anim. Sci 2003;42:9–18. [PubMed: 12580569]
95. Fisher ER, Fisher B. Recent observations on concepts of metastasis. Arch. Pathol 1967;83(4):321– 324. [PubMed: 6022744]
96. Folkman J. How is blood vessel growth regulated in normal and neoplastic tissue? – G.H.A. Clowes Memorial Award Lecture. Cancer Res 1986;46(2):467–473. [PubMed: 2416426]
97. Liotta LA. Tumor invasion and metastases-role of the extracellular matrix: Rhoads Memorial Award Lecture. Cancer Res 1986;46(1):1–7. [PubMed: 2998604]
98. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer 2003;3(6):453–458. [PubMed: 12778135] Important review of the metastatic process.
99. Folkman J. Toward an understanding of angiogenesis: search and discovery. Perspect. Biol. Med 1985;29(1):10–36. [PubMed: 2415913]
100. Langley RR, Fidler IJ. Tumor cell–organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr. Rev 2007;28(3):297–321. [PubMed: 17409287]
101. Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983;219(4587):983–985. [PubMed: 6823562]
102. Spannuth WA, Sood AK, Coleman RL. Angiogenesis as a strategic target for ovarian cancer therapy. Nat. Clin. Pract. Oncol 2008;5(4):194–204. [PubMed: 18268546]
103. Ferrara N. Vascular endothelial growth factor. Eur. J. Cancer 1996;32A(14):2413–2422. [PubMed: 9059329]
104. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr. Rev 1997;18(1):4–25. [PubMed: 9034784]
105. Fredriksson JM, Lindquist JM, Bronnikov GE, et al. Norepinephrine induces vascular endothelial growth factor gene expression in brown adipocytes through a β-adrenoreceptor/cAMP/protein kinase-A pathway involving Src but independently of ERK1/2. J. Biol. Chem 2000;275(18): 13802–13811. [PubMed: 10788502]
106. Yang E, Donovan EL, Benson DM, Glaser R. VEGF is differentially regulated in multiple myeloma-derived cell lines by norepinephrine. Brain Behav. Immun 2008;22:318–322. [PubMed: 17981009]
107. Lutgendorf SK, Johnsen EL, Cooper B, et al. Vascular endothelial growth factor and social support in patients with ovarian carcinoma. Cancer 2002;95(4):808–815. [PubMed: 12209725]
108. Lutgendorf SK, Lamkin DM, Jennings NB, et al. Biobehavioral influences on matrix metalloproteinase expression in ovarian carcinoma. Clin. Cancer Res 2008;14:6839–6846. [PubMed: 18980978]
109. Sharma A, Greenman J, Sharp DM, Walker LG, Monson JR. Vascular endothelial factor and psychosocial factors in colorectal cancer. Psychooncology 2008;17(1):66–73. [PubMed: 17410522]
110. Costanzo ES, Lutgendorf SK, Sood AK, Anderson B, Sorosky J, Lubaroff DM. Psychosocial factors and interleukin-6 among women with advanced ovarian cancer. Cancer 2005;104:305– 313. [PubMed: 15954082] 
111. Van Snick J. Interleukin-6: an overview. Annu. Rev. Immunol 1990;8:253–278. [PubMed: 2188664]
112. Obata NH, Tamakoshi K, Shibata K, et al. Effects of interleukin-6 on in vitro cell attachment, migration and invasion of human ovarian carcinoma. Anticancer Res 1997;17(1A):337–342. [PubMed: 9066674]
113. Wu S, Rodabaugh K, Martinez-Maza O, et al. Stimulation of ovarian tumor cell proliferation with monocyte products including interleukin-1, interleukin-6, and tumor necrosis factor-α. Am. J. Obstet. Gynecol 1992;166(3):997–1007. [PubMed: 1550178]
114. Nilsson MB, Langley RR, Fidler IJ. Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Res 2005;65(23):10794–10800. [PubMed: 16322225]
115. Nilsson MB, Armaiz-Pena G, Takahashi R, et al. Stress hormones regulate interleukin-6 expression by human ovarian carcinoma cells through a Src-dependent mechanism. J. Biol. Chem 2007;282(41):29919–29926. [PubMed: 17716980]
116. Yang EV, Sood AK, Chen M, et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res 2006;66(21):10357–10364. [PubMed: 17079456]
117. Landen CN, Lin YG, Armaiz Pena GN, et al. Neuroendocrine modulation of signal transducer and activator of transcription-3 in ovarian cancer. Cancer Res 2007;67(21):10389–10396. [PubMed: 17974982]
118. Machein MR, Kullmer J, Ronicke V, et al. Differential downregulation of vascular endothelial growth factor by dexamethasone in normoxic and hypoxic rat glioma cells. Neuropathol. Appl. Neurobiol 1999;25(2):104–112. [PubMed: 10215998]
119. Fidler IJ. Critical factors in the biology of human cancer metastasis: twenty-eighth GHA Clowes Memorial Award Lecture. Cancer Res 1990;50(19):6130–6138. [PubMed: 1698118]
120. Flaxman BA, Harper RA. In vitro analysis of the control of keratinocyte proliferation in human epidermis by physiologic and pharmacologic agents. J. Invest. Dermatol 1975;65(1):52–59. [PubMed: 239072]
121. Vandewalle B, Revillion F, Lefebvre J. Functional β-adrenergic receptors in breast cancer cells. J. Cancer Res. Clin. Oncol 1990;116(3):303–306. [PubMed: 2164516]
122. Marchetti B, Spinola PG, Pelletier G, et al. A potential role for catecholamines in the development and progression of carcinogen- induced mammary tumors: hormonal control of β- adrenergic receptors and correlation with tumor growth. J. Steroid Biochem. Mol. Biol 1991;38(3):307–320. [PubMed: 1848992]
123. Abramovitch R, Tavor E, Jacob-Hirsch J, et al. A pivotal role of cyclic AMP-responsive element binding protein in tumor progression. Cancer Res 2004;64(4):1338–1346. [PubMed: 14973073]
124. Lang K, Drell TL 4th, Lindecke A, et al. Induction of a metastatogenic tumor cell type by neurotransmitters and its pharmacological inhibition by established drugs. Int. J. Cancer 2004;112(2):231–238. [PubMed: 15352035]
125. Jean D, Bar-Eli M. Regulation of tumor growth and metastasis of human melanoma by the CREB transcription factor family. Mol. Cell. Biochem 2000;212(1–2):19–28. [PubMed: 11108132]
126. Scarparo AC, Sumida D, Patrao MT, et al. Catecholamine effects on human melanoma cells evoked by α1-adrenoceptors. Arch. Dermatol. Res 2004;296(3):112–119. [PubMed: 15278367]
127. Pifl C, Zezula J, Spittler A, et al. Antiproliferative action of dopamine and norepinephrine in neuroblastoma cells expressing the human dopamine transporter. FASEB J 2001;15(9):1607– 1609. [PubMed: 11427501]
128. Cox ME, Deeble PD, Lakhani S, et al. Acquisition of neuroendocrine characteristics by prostate tumor cells is reversible: implications for prostate cancer progression. Cancer Res 1999;59(15): 3821–3830. [PubMed: 10447001]
129. Cohen RJ, Glezerson G, Haffejee Z. Neuroendocrine cells – a new prognostic parameter in prostate cancer. Br. J. Urol 1991;68(3):258–262. [PubMed: 1913066]
130. Theodorescu D, Broder SR, Boyd JC, et al. Cathepsin D and chromogranin A as predictors of long term disease specific survival after radical prostatectomy for localized carcinoma of the prostate. Cancer 1997;80(11):2109–2119. [PubMed: 9392333]
131. di Sant’Agnese PA. Neuroendocrine differentiation in human prostatic carcinoma. Hum. Pathol 1992;23(3):287–296. [PubMed: 1313390]
132. Zhao XY, Malloy PJ, Krishnan AV, et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat. Med 2000;6(6):703– 706. [PubMed: 10835690]
133. Simon WE, Albrecht M, Trams G, et al. In vitro growth promotion of human mammary carcinoma cells by steroid hormones, tamoxifen, and prolactin. J. Natl Cancer Inst 1984;73(2): 313–321. [PubMed: 6589426]
134. Boudreau N, Bissell MJ. Extracellular matrix signaling: integration of form and function in normal and malignant cells. Curr. Opin. Cell. Biol 1998;10(5):640–646. [PubMed: 9818175]
135. Hay, ED., editor. Biology of the Extracellular Matrix. 2nd edition. Plenum Press; NY, USA: 1991.
136. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992;69(1):11– 25. [PubMed: 1555235]
137. Mercurio AM, Rabinovitz I. Towards a mechanistic understanding of tumor invasion – lessons from the α6β-4 integrin. Semin. Cancer Biol 2001;11(2):129–141. [PubMed: 11322832]
138. Kawasaki H, Springett GM, Mochizuki N, et al. A family of cAMP-binding proteins that directly activate Rap1. Science 1998;282(5397):2275–2279. [PubMed: 9856955]
139. de Rooij J, Zwartkruis FJ, Verheijen MH, et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 1998;396(6710):474–477. [PubMed: 9853756]
140. Rangarajan S, Enserink JM, Kuiperij HB, et al. Cyclic AMP induces integrin-mediated cell adhesion through Epac and Rap1 upon stimulation of the β2-adrenergic receptor. J. Cell Biol 2003;160(4):487–493. [PubMed: 12578910]
141. Enserink JM, Price LS, Methi T, et al. The cAMP–Epac–Rap1 pathway regulates cell spreading and cell adhesion to laminin-5 through the α3β1 integrin but not the α6β4 integrin. J. Biol. Chem 2004;279(43):44889–44896. [PubMed: 15302884]
142. Yang EV, Bane CM, MacCallum RC, et al. Stress-related modulation of matrix metalloproteinase expression. J. Neuroimmunol 2002;133(1–2):144–150. [PubMed: 12446017]
143. Wu W, Yamaura T, Murakami K, et al. Involvement of TNF-α in enhancement of invasion and metastasis of colon 26-L5 carcinoma cells in mice by social isolation stress. Oncol. Res 1999;11(10):461–469. [PubMed: 10850887]
144. Entschladen F, Lang K, Drell TL, et al. Neurotransmitters are regulators for the migration of tumor cells and leukocytes. Cancer Immunol. Immunother 2002;51(9):467–482. [PubMed: 12357318]
145. Masur K, Niggemann B, Zanker KS, et al. Norepinephrine-induced migration of SW 480 colon carcinoma cells is inhibited by β-blockers. Cancer Res 2001;61(7):2866–2869. [PubMed: 11306460]
146. Joseph J, Niggemann B, Zaenker KS, et al. The neurotransmitter γ-aminobutyric acid is an inhibitory regulator for the migration of SW 480 colon carcinoma cells. Cancer Res 2002;62(22): 6467–6469. [PubMed: 12438237]
147. Sood AK, Bhatty R, Kamat AA, et al. Stress hormone-mediated invasion of ovarian cancer cells. Clin. Cancer Res 2006;12(2):369–375. [PubMed: 16428474]
148. Drell T, Joseph J, Lang K, et al. Effects of neurotransmitters on the chemokinesis and chemotaxis of MDA-MB-468 human breast carcinoma cells. Breast Cancer Res. Treat 2003;80(1):63–70. [PubMed: 12889599]
149. Pollard J. Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer 2004;4:71–78. [PubMed: 14708027]
150. Coussens LM, Werb Z. Inflammation and cancer. Nat. Rev. Cancer 2002;420:860–867.
151. Chan AS, Ng LW, Poon LS, Chan WW, Wong YH. Dopaminergic and adrenergic toxicities on SK-N-MC human neuroblastoma cells are mediated through G protein signaling and oxidative stress. Apoptosis 2007;12:167–179. [PubMed: 17136323]
152. Sastry K. Epinephrine protects cancer cells from apoptosis via activation of cAMP-dependent protein kinase and BAD phosphorylation. J. Biol. Chem 2007;282:14094–14100. [PubMed: 17353197]
153. Distelhorst CW. Recent insights into the mechanism of glucocorticosteroid-induced apoptosis. Cell Death Differ 2002;9(1):6–19. [PubMed: 11803370]
154. Herr I, Ucur E, Herzer K, et al. Glucocorticoid cotreatment induces apoptosis resistance toward cancer therapy in carcinomas. Cancer Res 2003;63(12):3112–3120. [PubMed: 12810637]
155. Wu W, Chaudhuri S, Brickley DR, et al. Microarray analysis reveals glucocorticoid-regulated survival genes that are associated with inhibition of apoptosis in breast epithelial cells. Cancer Res 2004;64(5):1757–1764. [PubMed: 14996737]
156. Zhang C, Kolb A, Buchler P, et al. Corticosteroid co-treatment induces resistance to chemotherapy in surgical resections, xenografts and established cell lines of pancreatic cancer. BMC Cancer 2006;6:61. [PubMed: 16539710]
157. Bekasi S, Zalatnai A. Overexpression of glucocorticoid receptor in human pancreatic cancer and in xenografts. An immunohistochemical study. Pathol. Oncol. Res 2009;15(4):561–566. [PubMed: 19253003]
158. Zhang C, Kolb A, Mattern J, et al. Dexamethasone desensitizes hepatocellular and colorectal tumours toward cytotoxic therapy. Cancer Lett 2006;242(1):104–111. [PubMed: 16338063]
159. Zhang C, Beckermann B, Kallifatidis G, et al. Corticosteroids induce chemotherapy resistance in the majority of tumour cells from bone, brain, breast, cervix, melanoma and neuroblastoma. Int. J. Oncol 2006;29(5):1295–1301. [PubMed: 17016664]
160. Zhang C, Marme A, Wenger T, et al. Glucocorticoid-mediated inhibition of chemotherapy in ovarian carcinomas. Int. J. Oncol 2006;28(2):551–558. [PubMed: 16391812]
161. Zhang C, Wenger T, Mattern J, et al. Clinical and mechanistic aspects of glucocorticoid-induced chemotherapy resistance in the majority of solid tumors. Cancer Biol. Ther 2007;6(2):278–287. [PubMed: 17224649]
162. Sood AK, Armaiz-Pena GN, Halder J, et al. Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis. J. Clin. Invest 2010;120(5):1515–1523. [PubMed: 20389021]
163. Dave JR, Anderson SM, Saviolakis GA, et al. Chronic sustained stress increases levels of anterior pituitary prolactin mRNA. Pharmacol. Biochem. Behav 2000;67(3):423–431. [PubMed: 11164069]
164. Almeida SA, Petenusci SO, Franci JA, et al. Chronic immobilization-induced stress increases plasma testosterone and delays testicular maturation in pubertal rats. Andrologia 2000;32(1):7– 11. [PubMed: 10702860]
165. Young WS 3rd, Lightman SL. Chronic stress elevates enkephalin expression in the rat paraventricular and supraoptic nuclei. Brain Res. Mol. Brain Res 1992;13(1–2):111–117. [PubMed: 1349719]
166. Glavin GB, Szabo S. Dopamine in gastrointestinal disease. Dig. Dis. Sci 1990;35(9):1153–1161. [PubMed: 2202571]
167. Mezey E, Eisenhofer G, Hansson S, et al. Dopamine produced by the stomach may act as a paracrine/autocrine hormone in the rat. Neuroendocrinology 1998;67(5):336–348. [PubMed: 9641616]
168. Thaker PH, Sood AK. Neuroendocrine influences on cancer biology. Semin. Cancer Biol 2007;18:164–170. [PubMed: 18201896]
169. Basu S, Nagy JA, Pal S, et al. The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat. Med 2001;7(5):569–574. [PubMed: 11329058]
170. Teunis MA, Kavelaars A, Voest E, et al. Reduced tumor growth, experimental metastasis formation, and angiogenesis in rats with a hyperreactive dopaminergic system. FASEB J 2002;16(11):1465–1467. [PubMed: 12205050]
171. Chakroborty D, Sarkar C, Basu B, et al. Catecholamines regulate tumor angiogenesis. Cancer Res 2009;69(9):3727–3730. [PubMed: 19383906]
172. Basu S, Sarkar C, Chakroborty D, et al. Ablation of peripheral dopaminergic nerves stimulates malignant tumor growth by inducing vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis. Cancer Res 2004;64:5551–5555. [PubMed: 15313889]